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Our comprehension and mechanization of intelligence is nascent
• best models and algorithms change every year
• increasingly heterogeneous composition of models
• huge appetite for more compute throughput

At least until we understand intelligence better, we need machines which...
• exploit massive parallelism
• are agnostic to model structure
• have a simple programming abstraction
• are efficient for both learning and inference
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ResNet-50 

training batch=4

Graphs can represent arbitrary model 
structure and expose compute parallelism.

We need to expose a lot of parallelism...
O(1000) work items/processor

x O(1000) processors/chip
x O(1000) chips/system

In a parallel computer, communication is 
part of the computation.  It’s attractive to 
compile “communication kernels”, as well 
as compute kernels.
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smaller larger

Types of Parallelism

• kernel partitioning
• pipelining
• parallel paths
• model clones sharing parameters, different data
• model clones with different parameters/cost functions/hyper-params, shared data
• multiple models of different structure
• ...
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Volta V100 fmac utilization on DeepBench
https://github.com/baidu-research/DeepBench
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test cases
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Kernel partitioning exhausted?
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Gflop in 
layer

Layer count (sorted)

Inception-v4

ResNet-50
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Challenges for the Age of Parallel Processors

• Power
• Memory
• Abstraction 

As parallelism goes up, local resources per processor go down.
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Post-Dennard Silicon Scaling

• Transistors / chip ~30% / year
• Compute / Watt ~15% / year

65n
Woodcrest X5160 2c
Conroe X3085 2c

45n
Lynnfield X3470 4c
Nehalem X7550 8c

32n
Westmere E7-8870 10c
SandyBridge E5-2690 8c

22n
IvyBridge E7-2890v2 15c
Haswell E7-8890v3 18c

14n
Broadwell E7-8894v4 24c
Skylake 8180P 28c

65n 45n 32n 22n 14n

~2.5 years/node

SRAM 
bitcells/um2

logic T/um2

(10.mmp.cpp/T)

core 
cycles/Joule

Big Xeon exemplars:

~ √2x per node

~ 2x per nodelog
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Silicon efficiency is the full use of available power

• Keep data local
• Serialise communication and compute
• Re-compute what you can’t remember

Proximity of memory is defined by energy, more than latency.
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0.8pJ/flop     0.25mm2

256kB fast memory

0.8pJ/B     0.33mm2

200Gflop16.32/s processor

eg. 4 flop/B
=> 0.2pJ/flop

(rough metrics for 16nm)
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All logic chips are power limited

Largest manufacturable 
die ~825mm2

500Tflop16.32

500W
NOK

250Tflop16.32

225MB
250W

125Tflop16.32

337MB
125W
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16GB @ 900GB/s 600MB @ 90TB/s

DRAM on interposer
180W GPU + 60W HBM2

Processor + memory systems @ 240W (for 300W card)

Distributed SRAM on chip
120W IPU x2
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“Colossus” IPU
(in honour of Tommy Flowers)

• All-new pure distributed multi-processor for MI.
• Mostly memory, for “model on chip”.
• A cluster of IPUs acts like a bigger IPU.
• Bulk Synchronous Parallel (BSP) execution.
• Stepwise-compiled deterministic communication.
• Programmed using standard frameworks (TensorFlow, ...) 

over Poplar™ native graph abstraction.
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2432 processor tiles >200Tflop ~600MB

host I/O
PCIe-4

all-to-all exchange spines each ~8TBps
link + host bandwidth 384GBps/chip 

card-to-card
links

card-to-card
links

host I/O
PCIe-4

card-to-card
links

card-to-card
links

Colossus pair on a PCIe card
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inter-chip sync

sync

sync

sync

sync

sync

sync (1 tile abstains)

inter-chip sync

Bulk Synchronous Parallel

chip.1

chip.2

compute phase

exchange phase

Massive parallelism with 
no concurrency hazards

Communication patterns 
are compiled, but 
dynamically selected.
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BSP Execution Trace

COMPUTE EXCHANGE WAITING	FOR	SYNC SYNC

time

tiles
(sorted)

superstep

when some Tiles are quiet, clock can increase
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BSP Trace: ResNet-50 training, batch=4

COMPUTE EXCHANGE WAITING	FOR	SYNC SYNC
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Managing Memory

IPU has smaller memory than GPU, but greater effective compute:
• Use small batches per IPU.
• Trade compute for memory.
• Use memory-efficient algorithms/models

An efficient gradient learner will converge in a minimum number of parameter 
updates ...so smaller batches should learn faster, as well as generalizing better.
Efficient small batch machines allow learning to parallelise over more machines.
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Re-compute what you can’t remember

DenseNet-201 training, batch=16. 

Naive strategy: memorize 
activations only at input of each 
residue block, recompute all 
others in backward pass. ~1/5 memory

~1.25x compute

MiB
allocated

Time (#allocations normalised)

TensorFlow

less greedy

recomputedExecuting on CPU, recording total 
memory allocated for weights + 
activations.  Float16 weights and 
activations, single weight copy.
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Reversible Nets

F G

F G

2 sets of 
activations, 
layer N

2 sets of 
activations, 
layer N+1

2 sets of 
activations, 
layer N

2 sets of 
activations, 
layer N+1

No need to save any activations, except for layers which lose information (pool, stride).

arxiv.org/abs/1707.04585
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Some preliminary IPU benchmarks...

• ResNet-50 training at 2,250 images/s on 1 card with batch=8
16,000 image/s over 8 cards with batch=64

• DeepBench LSTM inference (per layer, 1536 hidden units, 50 steps)
60,000 iteration/s on 1 card at 7ms latency

• 600 full WaveNet voice generators on 1 card at 16k sample/s
(MOS 3.35, 20 layers, 64 residual channels, 128 skip channels)

More at www.graphcore.ai
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Thank You
simon@graphcore.ai


