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Reinforcement Learning = Al?

action
- Definition of “RL”

broad enough to
capture all that is

needed for AGI OO
000,
- Increased interest 000 Welgle
and improved OObO
algorithms

- Large investments
are made observation



till a long way to go...
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What's keeping us?

- Credit assignment

- Compute

-+ Many other things we will not discuss right now



Credit assignment is difficult
for general MDPs



Credit assignment is difficult
for general MDPs

- At state s: take action a:. Next get state s+
-+ Receive return R after taking T actions

* No precisely timed rewards, no discounting, no
value functions

- Currently this seems true for our hardest problems,
like meta learning

Duan et al (2016) "RL*2: Fast Reinforcement Learning via Slow Reinforcement Learning.”
Wang et al. (2016) "Learning to reinforcement learn."



Vanilla policy gradients

- Stochastic policy P(a | s,0)

- Estimate gradient of expected return F = E[R] using
REINFORCE

V@Fpg(@) — "Za {R(a)VQ logp(a; 9)}




Vanilla policy gradients

- Correlation between return and individual actions is
typically low

Var|VoFpg(0)] =~ Var[R(a)|Var[Vglogp(a;f)]

+ Gradient of logprob is sum of T uncorrelated
terms

Vg logp(a Z Vo logp(a;; 0)

- This means the variance grows linearly with T!



We can do only very little
sequential computation



CPU clock speed has
stopped improving long ago
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But increased parallelism
Keeps us going
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Communication is the
eventual bottleneck

+ Clock speed = constant

- Number of cores —

» communication bandwidth between cores

becomes bottleneck



Thought experiment:
What's the optimal algorithm to calculate a
policy gradient if...

- Sequence length T —
- We cannot do credit assignment

- Communication is the only computational bottleneck



Thought experiment:
What's the optimal algorithm to calculate a
policy gradient if...

- Sequence length T —
- We cannot do credit assignment

- Communication is the only computational bottleneck

Finite differences!



Finite differences and other
black box optimizers

Larp(aits+e)[R(Q)] — Earp(aig,—o)[R(Q))
2€

V()i Fp@ (9) ~

+ Each function evaluation only requires
communicating a scalar result

+ Variance independent of sequence length

+ No credit assignment required



Evolution Strategies

+ Old technique, known under many other names

- Randomized finite differences:

- Add noise vector € to the parameters

If the result improves, keep the change

- Repeat

iteration 1, reward -0.13 iteration 2, reward 0.15 iteration 3, reward 0.31 iteration 4, reward 0.40

L




Parallelization

- You have a bunch of workers

- They all try on different random noise
- Then they report how good the random noise was

- But they don't need to communicate the noise
vecltor

-+ Because they know each other’s seeds!



Parallelization

1: Input: Learning rate o, noise standard deviation o, initial policy parameters 6
2: Initialize: n workers with known random seeds, and initial parameters 6

3: fort =0,1,2,... do

4.
5:
6:
7:
8:

O:
10:
11:

12:
13: end for

for each worker: =1,...,n do
Sample ¢; ~ N (0, 1)
Compute returns F; = F'(0; + o¢;)
end for
Send all scalar returns F; from each worker to every other worker
for each worker: =1,...,n do

Reconstruct all perturbations e; for j = 1,...,n using known random seeds
Set9t+1 — Ht —|—Of— 2_7 1 F F€j
end for




Distributed Deep Learning




Distributed Deep Learning

Each worker . .
sends
big vectors N 1

L aend Rend
/N
s




Distributed Evolution
Strategies

Each worker
broadcasts
tiny scalars

.‘..




Distributed Evolution
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Distributed Evolution
Strategies

... w

Each worker
broadcasts
tiny scalars




Does it work in practice?

- Surprisingly competitive with popular RL techniques
in terms of data efficiency

- need 3-10x more data than TRPO / A3C on
MudoCo and Atari

- No backward pass, no need to store activations in
memory

* Near perfect scaling



MuJoCo results

ES needs more data, but it achieves nearly the
same result

If we use 1440 cores, we need 10 minutes to solve
the humanoid task, which takes 1 day with TRPO

on a single machine

Walker

HalfCheetah




Distributed Evolution

Strategies

- Quantitative results on the Humanoid MuJoCo task:

18 cores, 657 minutes

102

Median time to solve (minutes)

101 1440 cores, 10 minutes

102 103
Number of CPU cores



Distributed Evolution
Strategies

- Networking requirements very limited

+ Cheap! $12 to rent 1440 cores for an hour on
Amazon EC2 with spot pricing

+ Can run the experiment 6 times for $12!



MuJdoCo Results

- Humanoid walker




Atari Results

- We can match one-day A3C on Atari games on
average (better on 50%, worse on 50% of games)

in 1 hour of our distributed implementation with 720
cores




Long Horizons

» Long horizons are hard for RL

- RL is sensitive to action frequency

- Higher frequency of actions makes the RL problem

more difficult

* Not so for Evolution Strategies



Long Horizons
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How can it work In high
dimensions?

- Fact: the speed of Evolution Strategies depends on
the intrinsic dimensionality of the problem, not on
the actual dimensionality of the neural net policy



Intrinsic Dimensionality

@ Loss Evolution strategies
doesn’t care about:

\

relevant Irrelevant
parameters parameters

- Evolution strategies automatically discards the
irrelevant dimensions — even when they live on a
complicated subspace!



Intrinsic Dimensionality

- One explanation for how hill-climbing can succeed
iIn a million-dimensional space!

-+ Parameterization of policy matters more than
number of parameters

- Virtual batch normalization helps a lot

Salimans et al. (2016) "Improved techniques for training GANs."

- Future advances to be made?



Backprop vs Evolution
Strategies

- Evolution strategies does not use backprop

+ S0 scale of initialization, vanishing gradients, etc,
are not important?



Backprop vs Evolution
Strategies

- Counterintuitive result: every trick that helps
backprop, also helps evolution strategies

+ scale of random init, batch norm, ResNet...

- Why? Because evolution strategies tries to
estimate the gradientt

- If the gradient is vanishing, we won’t get much by
estimating it!



Conclusion: pros

+ Though experiment: black box methods optimal if

long horizon, no credit assignment, bandwidth
limited

- Scales extremely well
-+ Competitive with other RL techniques

- Possibility proof for evolution of intelligence: us



Conclusion: cons

Natural evolution seems much more sophisticated
Better parameterization?

Evolution of evolvability?

Assumption that we cannot solve credit
assignment / communication may be pessimistic

We should not give up on improvements in credit
assignment, value functions, hierarchical RL,
networking, and communication strategies!



