

Neumann Optimizer

A Practical Optimization Algorithm for Deep Neural Networks

Shankar Krishnan, Ying Xiao, Rif A. Saurous Google Al Perception Research

Training Deep Networks

- Loss function is non-convex
- Finite sample size
- Lower loss doesn't necessarily imply better model performance
- Computational hurdles

Create function approximation around the current iterate

Create function approximation around the current iterate

1st order:
$$\mathcal{F}(w_t) + \nabla \mathcal{F}(w_t)^T (z-w_t) + \frac{1}{2\eta} \left\|z-w_t\right\|^2$$

Create function approximation around the current iterate

1st order:
$$\mathcal{F}(w_t) + \nabla \mathcal{F}(w_t)^T (z - w_t) + \frac{1}{2\eta} \left\| z - w_t \right\|^2$$

2nd order:
$$\nabla \mathcal{F}(w_t)^T (z-w_t) + \frac{1}{2} (z-w_t)^T \nabla^2 \mathcal{F}(w_t) (z-w_t)$$

Create function approximation around the current iterate

1st order:
$$\mathcal{F}(w_t) + \nabla \mathcal{F}(w_t)^T (z-w_t) + \frac{1}{2\eta} \left\|z-w_t\right\|^2$$

2nd order:
$$\nabla \mathcal{F}(w_t)^T (z-w_t) + \frac{1}{2} (z-w_t)^T \nabla^2 \mathcal{F}(w_t) (z-w_t)$$

Cubic reg.:
$$\nabla \mathcal{F}(w_t)^T (z - w_t) + \frac{1}{2} (z - w_t)^T \nabla^2 \mathcal{F}(w_t) (z - w_t) + \frac{\alpha}{3} \|z - w_t\|^3$$

Neumann Optimizer

- Designed for large batch setting
- Incorporates second order information, without explicitly representing the Hessian
- Based on cubic regularized approximation
- Total per step cost is same as Adam

Neumann Optimizer - Results

- Linear speedup with increasing batch size
- 0.8 0.9% test accuracy improvements over baseline on image models
- 10-30% faster than current methods for comparable computational resources

Two Loop Algorithm

• For each mini-batch: solve the quadratic problem of the mini-batch to "good" accuracy.

$$\mathcal{G}(z) = \mathcal{F}(w_t) + \nabla \mathcal{F}(w_t)^T (z - w_t) + \frac{1}{2} (z - w_t)^T \nabla^2 \mathcal{F}(w_t) (z - w_t),$$

Use the solutions of the quadratic problem as updates.

$$w_{t+1} = w_t - \left[\nabla^2 \mathcal{F}(w_t)\right]^{-1} \nabla \mathcal{F}(w_t).$$

 Hypothesis: with very large mini-batches, the cost-benefit is in favour of extracting more information.

Inner loop: solving a quadratic via power series

How to solve the quadratic?

$$Az = b$$

Use the geometric (Neumann) series for inverse, if A > 0, $||A||_2 < 1$

$$A^{-1} = \sum_{i=0}^{\infty} (I_n - A)^i.$$

This implies the iteration:

$$z_0 = b$$
 and $z_{t+1} = (I_n - A)z_t + b$,

Eliminate the Hessian calculation (too expensive)

Back to the mini-batch problem:

$$\nabla^2 \mathcal{F}(w_t)(w - w_t) = -\nabla \mathcal{F}(w_t)$$

This implies an iteration:

$$m_{t+1} = (I_n - \eta \nabla^2 \hat{f}) m_t - \nabla \hat{f}(w_t)$$

 $= m_t - (\nabla \hat{f}(w_t) + \eta \nabla^2 \hat{f}m_t))$
 $\approx m_t - \nabla \hat{f}(w_t + \eta m_t).$

Convex Quadratics

Some tweaks for actual neural networks

Cubic regularizer (convexification of overall problem) + Repulsive regularizer

$$\hat{g}(w) = \hat{f}(w) + \frac{\alpha}{3} \|w - v_t\|^3 + \beta / \|w - v_t\|$$

Convexification of each mini-batch.

$$\mu = rac{\lambda_{ ext{max}}}{|\lambda_{ ext{min}}| + \lambda_{ ext{max}}} \quad ext{and} \quad \eta = rac{1}{\lambda_{ ext{max}}}.$$

$$m_k = \mu m_{k-1} - \eta \nabla \hat{g}(w_t + \mu m_{k-1}).$$

Spectrum of the Hessian

- Studied on various image models
- Lanczos method during optimization
- Similar behavior of extreme eigenvalues
- Consistent with other studies
 [Sagun '16, Chaudhari '16, Dauphin '14]

Spectrum of the Hessian

- Studied on various image models
- Lanczos method during optimization
- Similar behavior of extreme eigenvalues
- Consistent with other studies
 [Sagun '16, Chaudhari '16, Dauphin '14]

$$\mu \propto 1 - rac{1}{1+t}$$
 $\eta \propto 1/t$

Our Algorithm

for
$$t=1,2,3,\ldots,T$$
 do Draw a sample $(x_{t_1},y_{t_1}),\ldots,(x_{t_B},y_{t_B}).$ Compute derivative $\nabla \hat{f}=(1/B)\sum_{i=1}^B \nabla \ell(y_{t_i},g(x_{t_i},w_t))$ Compute update $d_t=\nabla \hat{f}+\left(\alpha\left\|w_t-v_t\right\|^2-\frac{\beta}{\left\|w_t-v_t\right\|^2}\right)\frac{w_t-v_t}{\left\|w_t-v_t\right\|}$ Update Neumann iterate: $m_t=\mu(t)m_{t-1}-\eta(t)d_t.$ Update weights: $w_t=w_{t-1}+\mu(t)m_t-\eta(t)d_t.$ Update moving average of weights: $v_t=w_t+\gamma(v_{t-1}-w_t)$ return $w_T-\mu(T)m_T$

Experimental Results

- Used image models for experimentation
 - o Cifar10, Cifar100, Imagenet
- Various network architectures
 - Resnet-V1, Inception-V3, Inception-Resnet-V2
- Training on GPUs (P100, K40)
 - Multiple GPUs in sync mode for large batch training
- Update steps/epochs to measure performance

Experiments on ImageNet (Inception V3)

Experiments on ImageNet (Resnet Architectures)

Final Top-1 Validation Error

	Baseline	Neumann	Improvement
Inception-V3	21.7 %	20.8 %	0.91%
Resnet-50	23.9 %	23.0 %	0.94 %
Resnet-101	22.6 %	21.7%	0.86 %
Inception-Resnet-V2	20.3 %	19.5 %	0.84 %

Large batch training

Scaling Performance on Resnet-50

Batch Size	Top-1 Validation Error	# Epochs
1600	23.0 %	226
4000	23.0 %	230
8000	23.1 %	258
16000	23.5 %	210
32000	24.0 %	237

Stochastic methods use unbiased estimates to carry out optimization

For first order methods with batch size B,
$$\hat{f}(w) = \frac{1}{B} \sum_{i=1}^{B} f_{t_i}(w)$$

Stochastic methods use unbiased estimates to carry out optimization

For first order methods with batch size B, $\hat{f}(w) = \frac{1}{B} \sum_{i=1}^{B} f_{t_i}(w)$

$$\mathbb{E}\left[\nabla \hat{f}(w)\right] = \nabla \mathcal{F}(w), \ \mathbb{E}\left[\left\|\nabla \hat{f}(w) - \nabla \mathcal{F}(w)\right\|^2\right] < \sigma^2$$

Stochastic methods use unbiased estimates to carry out optimization

For first order methods with batch size B, $\hat{f}(w) = \frac{1}{B} \sum_{i=1}^{B} f_{t_i}(w)$

$$\mathbb{E}\left[\nabla \hat{f}(w)\right] = \nabla \mathcal{F}(w), \ \mathbb{E}\left[\left\|\nabla \hat{f}(w) - \nabla \mathcal{F}(w)\right\|^2\right] < \sigma^2$$

After T steps:
$$\mathbb{E}\left[\left\|\nabla \mathcal{F}(w)\right\|^2\right] \leq O\left(\frac{LD}{T} + \frac{\sigma\sqrt{LD}}{\sqrt{BT}}\right)$$

Stochastic methods use unbiased estimates to carry out optimization

For first order methods with batch size B, $\hat{f}(w) = \frac{1}{B} \sum_{i=1}^{B} f_{t_i}(w)$

$$\mathbb{E}\left[\nabla \hat{f}(w)\right] = \nabla \mathcal{F}(w), \ \mathbb{E}\left[\left\|\nabla \hat{f}(w) - \nabla \mathcal{F}(w)\right\|^2\right] < \sigma^2$$

After T steps:
$$\mathbb{E}\left[\left\|\nabla \mathcal{F}(w)\right\|^2\right] \leq O\left(\frac{LD}{T} + \frac{\sigma\sqrt{LD}}{\sqrt{BT}}\right)$$

$$B \approx O\left(\frac{\sigma^2 T}{LD}\right)$$

Conclusion and Future Work

- Stochastic optimization algorithm for training deep nets
- Exhibits linear speedup with batch size
- Gives better model performance
- Total per step cost on par with existing popular optimizers

Conclusion and Future Work

- Stochastic optimization algorithm for training deep nets
- Exhibits linear speedup with batch size
- Gives better model performance
- Total per step cost on par with existing popular optimizers

- Other model architectures and models
 - Preconditioned Neumann
- Experiment on TPUs

Thank you!

Paper: https://goo.gl/7M9Avr

Code: Tensorflow implementation coming soon

Ablation Experiment

