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Increasingly important to control curvature

https://arxiv.org/abs/1606.04838
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Control curvature with second-order methods

1. easy to estimate in stochastic / online setting
2. works on nonconvex objectives (positive definite)
3. fast to compute update (close to SGD)
4. adapted to problem / network architecture

Desiderata for         :



Natural gradients correct for curvature

Katherine Ye Chris Olah Shan Carter

but exact natural gradients are expensive...

figures from



Fast approx. natural gradient with K-FAC



Setup: ResNet-50 on SVHN

SVHN

- 32 x 32 images
- 10 digit classes
- 600,000 examples
- Inception-style data
  augmentation

ResNet-50

- Image classification
- 50 layers
- 25.5M parameters
- 3.8B FLOPs per
  inference

http://ufldl.stanford.edu/housenumbers/
https://github.com/tensorflow/models/blob/master/research/slim/preprocessing/inception_preprocessing.py
https://arxiv.org/pdf/1512.03385.pdf
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Training 
Loss

As batch size 
increases, 
SGD needs 

more 
examples.
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Training 
Loss

K-FAC 
converges at 

the same rate, 
regardless of 

batch size!
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Training 
Loss

2.3x to 7.8x 
fewer steps 

required.

Per-Example Progress: Loss



K-FAC is ready for use today!

- tf.contrib.kfac comes built-in 
with TensorFlow 1.4.

- Works out-of-the-box with 
feed-forward networks.

- Works in single-/multi- 
machine/GPU training setups.

- Bonus: Fisher Information Matrix 
estimation API.



K-FAC is ready for use today!
# Build model.

def model_fn(x):

  for i in range(...):

    w, b = tf.get_variable(...), tf.get_variable(...)

    z = tf.matmul(x, w) + b

    layer_collection.register_fully_connected((w, b), x, z)

    x = tf.nn.relu(z)

  layer_collection.register_categorical_predictive_distribution(z)

  return z

layer_collection = kfac.LayerCollection()

logits = model_fn(x)

# Construct training ops.

optimizer = GradientDescentOptimizer(...)

train_op = optimizer.minimize(loss_fn(y, logits)))

# Minimize loss.

with tf.Session() as sess:

  ...

  sess.run([train_op])
* Automatic layer registration coming soon!

Apply to your model with 2 changes,

1. Register layers*

2. Use K-FAC Optimizer
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K-FAC is ready for use today!
# Build model.

def model_fn(x, layer_collection):

  for i in range(...):

    w, b = tf.get_variable(...), tf.get_variable(...)

    z = tf.matmul(x, w) + b

    layer_collection.register_fully_connected((w, b), x, z)

    x = tf.nn.relu(z)

  layer_collection.register_categorical_predictive_distribution(z)

  return z

layer_collection = kfac.LayerCollection()

logits = model_fn(x, layer_collection)

# Construct training ops.

optimizer = kfac.KfacOptimizer(..., layer_collection=layer_collection)

train_op = optimizer.minimize(loss_fn(y, logits)))

# Minimize loss.

with tf.Session() as sess:

  ...

  sess.run([train_op, optimizer.cov_update_op, optimizer.inv_update_op])
* Automatic layer registration coming soon!

Apply to your model with 2 changes,

1. Register layers*

2. Apply K-FAC Optimizer



Coming soon...
TensorFlow Processing Unit Support

Up to 11.5 PetaFLOPs per 256-chip Pod. 
Available soon in Google Cloud.

RNN Support

Novel Fisher Approximations achieve same 
loss as ADAM in > 5x fewer steps.
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Homepage Example Code

https://goo.gl/9WXWWK https://goo.gl/B6cCnm

Usage

import
tensorflow.contrib.kfac

Daniel Duckworth
Research Engineer

Matt Johnson
Research Scientist


