
Google Brain

Google Research

DeepMind

K-FAC and Natural Gradients
Matt Johnson and Daniel Duckworth
Dec 8, 2017

James Martens Roger Grosse Jimmy Ba James Keeling Noah Siegel Olga Wichrowska Alok Aggarwal

Limits of big-batch training

Limits of big-batch training

Limits of big-batch training

Limits of big-batch training

Limits of big-batch training

Limits of big-batch training

Bottou, Curtis, Nocedal. Optimization methods for large-scale machine learning. 2016.

https://arxiv.org/abs/1606.04838

Limits of big-batch training

Bottou, Curtis, Nocedal. Optimization methods for large-scale machine learning. 2016.

https://arxiv.org/abs/1606.04838

Limits of big-batch training

Bottou, Curtis, Nocedal. Optimization methods for large-scale machine learning. 2016.

https://arxiv.org/abs/1606.04838

Limits of big-batch training

Bottou, Curtis, Nocedal. Optimization methods for large-scale machine learning. 2016.

https://arxiv.org/abs/1606.04838

Limits of big-batch training

Bottou, Curtis, Nocedal. Optimization methods for large-scale machine learning. 2016.

https://arxiv.org/abs/1606.04838

Limits of big-batch training

Bottou, Curtis, Nocedal. Optimization methods for large-scale machine learning. 2016.

Increasingly important to control curvature

https://arxiv.org/abs/1606.04838

Control curvature with second-order methods

Control curvature with second-order methods

Desiderata for :

Control curvature with second-order methods

1. easy to estimate in stochastic / online setting

Desiderata for :

Control curvature with second-order methods

1. easy to estimate in stochastic / online setting
2. works on nonconvex objectives (positive definite)

Desiderata for :

Control curvature with second-order methods

1. easy to estimate in stochastic / online setting
2. works on nonconvex objectives (positive definite)
3. fast to compute update (close to SGD)

Desiderata for :

Control curvature with second-order methods

1. easy to estimate in stochastic / online setting
2. works on nonconvex objectives (positive definite)
3. fast to compute update (close to SGD)
4. adapted to problem / network architecture

Desiderata for :

Natural gradients correct for curvature

Katherine Ye Chris Olah Shan Carter

but exact natural gradients are expensive...

figures from

Fast approx. natural gradient with K-FAC

Setup: ResNet-50 on SVHN

SVHN

- 32 x 32 images
- 10 digit classes
- 600,000 examples
- Inception-style data
 augmentation

ResNet-50

- Image classification
- 50 layers
- 25.5M parameters
- 3.8B FLOPs per
 inference

http://ufldl.stanford.edu/housenumbers/
https://github.com/tensorflow/models/blob/master/research/slim/preprocessing/inception_preprocessing.py
https://arxiv.org/pdf/1512.03385.pdf

Per-Step Progress: Loss

Training
Loss

Number of
parameter updates

Optimizer,
Batch Size

Training
Loss

Number of Passes
through the dataset

Optimizer,
Batch Size

Per-Example Progress: Loss

Training
Loss

Number of Passes
through the dataset

Optimizer,
Batch Size

Per-Example Progress: Loss

Training
Loss

As batch size
increases,
SGD needs

more
examples.

Per-Example Progress: Loss

Training
Loss

Per-Example Progress: Loss

Training
Loss

Per-Example Progress: Loss

Training
Loss

K-FAC
converges at

the same rate,
regardless of

batch size!

Per-Example Progress: Loss

Training
Loss

2.3x to 7.8x
fewer steps

required.

Per-Example Progress: Loss

K-FAC is ready for use today!

- tf.contrib.kfac comes built-in
with TensorFlow 1.4.

- Works out-of-the-box with
feed-forward networks.

- Works in single-/multi-
machine/GPU training setups.

- Bonus: Fisher Information Matrix
estimation API.

K-FAC is ready for use today!
Build model.

def model_fn(x):

 for i in range(...):

 w, b = tf.get_variable(...), tf.get_variable(...)

 z = tf.matmul(x, w) + b

 layer_collection.register_fully_connected((w, b), x, z)

 x = tf.nn.relu(z)

 layer_collection.register_categorical_predictive_distribution(z)

 return z

layer_collection = kfac.LayerCollection()

logits = model_fn(x)

Construct training ops.

optimizer = GradientDescentOptimizer(...)

train_op = optimizer.minimize(loss_fn(y, logits)))

Minimize loss.

with tf.Session() as sess:

 ...

 sess.run([train_op])
* Automatic layer registration coming soon!

Apply to your model with 2 changes,

1. Register layers*

2. Use K-FAC Optimizer

K-FAC is ready for use today!
Build model.

def model_fn(x, layer_collection):

 for i in range(...):

 w, b = tf.get_variable(...), tf.get_variable(...)

 z = tf.matmul(x, w) + b

 layer_collection.register_fully_connected((w, b), x, z)

 x = tf.nn.relu(z)

 layer_collection.register_categorical_predictive_distribution(z)

 return z

layer_collection = kfac.LayerCollection()

logits = model_fn(x, layer_collection)

Construct training ops.

optimizer = GradientDescentOptimizer(...)

train_op = optimizer.minimize(loss_fn(y, logits)))

Minimize loss.

with tf.Session() as sess:

 ...

 sess.run([train_op])
* Automatic layer registration coming soon!

Apply to your model with 2 changes,

1. Register layers*

2. Use K-FAC Optimizer

K-FAC is ready for use today!
Build model.

def model_fn(x, layer_collection):

 for i in range(...):

 w, b = tf.get_variable(...), tf.get_variable(...)

 z = tf.matmul(x, w) + b

 layer_collection.register_fully_connected((w, b), x, z)

 x = tf.nn.relu(z)

 layer_collection.register_categorical_predictive_distribution(z)

 return z

layer_collection = kfac.LayerCollection()

logits = model_fn(x, layer_collection)

Construct training ops.

optimizer = kfac.KfacOptimizer(..., layer_collection=layer_collection)

train_op = optimizer.minimize(loss_fn(y, logits)))

Minimize loss.

with tf.Session() as sess:

 ...

 sess.run([train_op, optimizer.cov_update_op, optimizer.inv_update_op])
* Automatic layer registration coming soon!

Apply to your model with 2 changes,

1. Register layers*

2. Apply K-FAC Optimizer

Coming soon...
TensorFlow Processing Unit Support

Up to 11.5 PetaFLOPs per 256-chip Pod.
Available soon in Google Cloud.

RNN Support

Novel Fisher Approximations achieve same
loss as ADAM in > 5x fewer steps.

THANK YOU
to our collaborators

James Martens (DeepMind)
Roger Grosse (University of Toronto)
Jimmy Ba (University of Toronto)
James Keeling (DeepMind)
Noah Siegel (DeepMind)
Olga Wichrowska (Google Brain)
Alok Aggarwal (Google Brain)
The TensorFlow Team

Martens, James, and Roger Grosse. "Optimizing
neural networks with Kronecker-factored approximate
curvature." International Conference on Machine
Learning. 2015. https://arxiv.org/abs/1503.05671

Grosse, Roger, and James Martens. "A
Kronecker-factored approximate Fisher matrix for
convolution layers." International Conference on
Machine Learning. 2016.
https://arxiv.org/abs/1602.01407

Ba, Jimmy, Roger Grosse, and James Martens.
"Distributed Second-Order Optimization using
Kronecker-Factored Approximations." (2016).
https://openreview.net/forum?id=SkkTMpjex

Homepage Example Code

https://goo.gl/9WXWWK https://goo.gl/B6cCnm

Usage

import
tensorflow.contrib.kfac

Daniel Duckworth
Research Engineer

Matt Johnson
Research Scientist

