
Device Placement Optimization with
Reinforcement Learning

Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner,
Mohammad Norouzi, Naveen Kumar, Rasmus Larsen, Yuefeng Zhou,
Quoc Le, Samy Bengio, and Jeff Dean

Google Brain

 Trend towards many-device training, bigger models, larger batch sizes

Why device placement?

Google neural machine translation’16
(trained on 128 GPUs)

Training ImageNet in 1-hr’17
(batch size = 8192, trained on
256 GPUs)

Sparsely gated mixture of experts’17
(batch size = 8192, >130 billion parameters,
trained on 128 GPUs)

Standard practice for device placement

● Often based on greedy heuristics
● Requires deep understanding of devices: nonlinear FLOPs, bandwidth,

latency behavior
● Requires modeling parallelism and pipelining
● Does not generalize well

ML for device placement

● ML is repeatedly replacing rule based heuristics

ML for device placement

● ML is repeatedly replacing rule based heuristics
● We show how RL can be applied to device placement

○ Effective search across large state and action spaces
○ Automated learning from environment only based on reward function (e.g. runtime

of a program)

ML for device placement

● ML is repeatedly replacing rule based heuristics
● We show how RL can be applied to device placement

○ Effective search across large state and action spaces
○ Automated learning from environment only based on reward function (e.g. runtime

of a program)
● We are inspired by success of ML for learning to search

Posing device placement as an RL problem

CPU GPU

Set of available devices

Neural model

Policy Assignment of ops in
neural model to devices

Input OutputRL model

Posing device placement as an RL problem

CPU GPU

Set of available devices

Neural model

Policy Assignment of ops in
neural model to devices

Input OutputRL model

Evaluate
runtime

᫮(ᶚ): expected runtime
ᶚ: trainable parameters of policy
R: runtime
ᶢ(Ƥ|g;ᶚ): policy
g : input neural graph

Ƥ: output placements ∈ {1,2,..,num_ops}num_devices

Problem formulation

Policy architecture

Policy architecture

Op types, e.g., Sum, Conv2d, MatMul
Op output shapes
Op adjacency information

Training with REINFORCE

Training with REINFORCE

Distributed training

Parameter server

Controller 1

Worker 1 Worker 2

Runtime
Placement

Placement

Runtime

Controller 2

Worker 1 Worker 2

Runtime
Placement

Placement

Runtime

Controller m

Worker 1 Worker 2

Runtime
Placement

Placement

Runtime
…...

Learned placement on Neural Machine Translation (NMT)

Layer-2
Layer-1
Embedding

White represents CPU (Ixion Haswell 2300)
Each other color represents a separate GPU (Nvidia Tesla K80)
Searching over a space of 5^280 possible assignments

Softmax
Attention
Layer-2
Layer-1
Embedding

Decoder

Encoder

NMT end to end training

Mirhoseini, Pham et al., “Device Placement Optimization with Reinforcement Learning”, ICML’17

Learned placement on Inception-V3

White represents CPU (Ixion Haswell 2300)
Each other color represents a separate GPU (Nvidia Tesla K80)
Searching over a space of 5^83 possible assignments

Inception-V3 end to end training

Model-parallelism with
batch 128

Data-parallelism, 4 towers
each with batch 32

Mirhoseini, Pham, et al., “Device Placement Optimization with Reinforcement Learning”, ICML’17

Profiling placement on NMT

Profiling placement on Inception-V3

Profiling placement on Inception-V3

Shortcomings of initially proposed model

● Seq2seq models cannot be unrolled for more than few hundred steps

● Most TensorFlow graphs contain tens of thousands of operations

● Manual grouping of operations hampers scalability

An end-to-end hierarchical placement model

Problem formulation for hierarchical placement

Objective: Minimize expected runtime for predicted placement d

᫮(ᶚg, ᶚd): expected runtime
ᶚg: trainable parameters of Grouper
ᶚd: trainable parameters of Placer
Rd: runtime for placement d

Problem formulation for hierarchical placement

Objective: Minimize expected runtime for predicted placement d

᫮(ᶚg, ᶚd): expected runtime
ᶚg: trainable parameters of Grouper
ᶚd: trainable parameters of Placer
Rd: runtime for placement d

Problem formulation for hierarchical placement

Probability of predicted group assignment of
operations

Problem formulation for hierarchical placement

Probability of predicted device placement
conditioned on grouping results

Gradient update for Grouper

Derivative w.r.t. parameters of Grouper

Gradient update for Placer

Derivative w.r.t. parameters of Placer

Learned placements on NMT

White represents CPU (Ixion Haswell 2300)
Each other color represents a separate GPU (Nvidia Tesla K80)
Searching over a space of ~5^40000 possible assignments

Results (runtime in seconds)

Results (runtime in seconds)

Results (runtime in seconds)

Summary

● Pose device placement as an RL problem

● Use policy gradient to learn placements

● Policy finds non-trivial assignment of operations to devices that outperform

heuristic approaches

● Profiling of results show policy learns implicit trade-offs between

computational and communication capabilities of underlying devices

