
Device Placement Optimization with 
Reinforcement Learning

Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner,
Mohammad Norouzi, Naveen Kumar, Rasmus Larsen, Yuefeng Zhou,
Quoc Le, Samy Bengio, and Jeff Dean

Google Brain



  Trend towards many-device training, bigger models, larger batch sizes 

Why device placement?

Google neural machine translation’16
(trained on 128 GPUs)

Training ImageNet in 1-hr’17
(batch size = 8192, trained on 
256 GPUs)

Sparsely gated mixture of experts’17 
(batch size = 8192, >130 billion parameters,
trained on 128 GPUs)



Standard practice for device placement

● Often based on greedy heuristics 
● Requires deep understanding of devices: nonlinear FLOPs, bandwidth, 

latency behavior 
● Requires modeling parallelism and pipelining
● Does not generalize well



ML for device placement

● ML is repeatedly replacing rule based heuristics
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ML for device placement

● ML is repeatedly replacing rule based heuristics
● We show how RL can be applied to device placement 

○ Effective search across large state and action spaces 
○ Automated learning from environment only based on reward function (e.g. runtime 

of a program)
● We are inspired by success of ML for learning to search



Posing device placement as an RL problem
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Posing device placement as an RL problem

CPU GPU

Set of available devices

Neural model

Policy Assignment of ops in 
neural model to devices

Input OutputRL model

Evaluate 
runtime



(ᶚ): expected runtime
ᶚ: trainable parameters of policy
R: runtime
ᶢ(Ƥ|g;ᶚ): policy
g : input neural graph

Ƥ: output placements ∈ {1,2,..,num_ops}num_devices

Problem formulation



Policy architecture



Policy architecture

Op types, e.g., Sum, Conv2d, MatMul
Op output shapes
Op adjacency information 



Training with REINFORCE



Training with REINFORCE



Distributed training
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Learned placement on Neural Machine Translation (NMT)

Layer-2
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Embedding

White represents CPU (Ixion Haswell 2300)
Each other color represents a separate GPU (Nvidia Tesla K80)
Searching over a space of 5^280 possible assignments
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NMT end to end training 

Mirhoseini, Pham et al., “Device Placement Optimization with Reinforcement Learning”, ICML’17



Learned placement on Inception-V3

White represents CPU (Ixion Haswell 2300)
Each other color represents a separate GPU (Nvidia Tesla K80)
Searching over a space of 5^83 possible assignments



Inception-V3 end to end training 

Model-parallelism with 
batch 128 

Data-parallelism, 4 towers 
each with batch 32 

Mirhoseini, Pham, et al., “Device Placement Optimization with Reinforcement Learning”, ICML’17



Profiling placement on NMT



Profiling placement on Inception-V3 



Profiling placement on Inception-V3 



Shortcomings of initially proposed model

● Seq2seq models cannot be unrolled for more than few hundred steps

● Most TensorFlow graphs contain tens of thousands of operations

● Manual grouping of operations hampers scalability



An end-to-end hierarchical placement model



Problem formulation for hierarchical placement 

Objective: Minimize expected runtime for predicted placement d

(ᶚg, ᶚd): expected runtime
ᶚg: trainable parameters of Grouper 
ᶚd: trainable parameters of Placer 
Rd: runtime for placement d
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Objective: Minimize expected runtime for predicted placement d

(ᶚg, ᶚd): expected runtime
ᶚg: trainable parameters of Grouper 
ᶚd: trainable parameters of Placer 
Rd: runtime for placement d



Problem formulation for hierarchical placement 

Probability of predicted group assignment of 
operations



Problem formulation for hierarchical placement 

Probability of predicted device placement 
conditioned on grouping results



Gradient update for Grouper

Derivative w.r.t. parameters of Grouper



Gradient update for Placer 

Derivative w.r.t. parameters of Placer



Learned placements on NMT

White represents CPU (Ixion Haswell 2300)
Each other color represents a separate GPU (Nvidia Tesla K80)
Searching over a space of ~5^40000 possible assignments



Results (runtime in seconds)
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Results (runtime in seconds)



Summary

● Pose device placement as an RL problem

● Use policy gradient to learn placements

● Policy finds non-trivial assignment of operations to devices that outperform 

heuristic approaches

● Profiling of results show policy learns implicit trade-offs between 

computational and communication capabilities of underlying devices


