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Three related questions:

e What properties control generalization?

e How should we tune SGD hyper-parameters?

e (Can we train efficiently with large batches?
(> 50,000 examples)




Small batches out-generalize large batches
(at constant learning rate)
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Prior probability ratio of

Bayesian model comparison the models. Usually 1.
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P(Mz2[{y},{z}) P({ytl{z}; M2) P(M2)

Probability ratio of two

competing models The evidence ratio!
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(Gaussian approximation) A is the L2 regularization parameter
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: : \. is the i!" Hessian eigenvalue
The Bayesian evidence ' °

(Gaussian approximation) A is the L2 regularization parameter
1 P
P({y}{z}; M) ~ exp { — | C(wo) + 5 p_Im(Xi/)
1=

I 7 .
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: : \. is the i!" Hessian eigenvalue
The Bayesian evidence ' °

(Gaussian approximation) A is the L2 regularization parameter

P{uH{a} M) = exp s — ( Clun) + 5 D" /N

Invariant to changes in

model parameterization Width of the
(sharp minima can’t generalize!) minimum



Which minimum is best?
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Which minimum is best?
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Generalization is a weighted
Q combination of:
1) Depth

\/ 2) Width




Which minimum is best?
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The SGD should not minimize the

Q cost function
V It should maximize the evidence




The SGD gradient update
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The SGD gradient update

Ay = £ [dC, (dC _dC
“ 7 N \dw dw  dw
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The SGD gradient update

Ay = £ [dC, (dC _dC
“ 7 N \dw dw  dw

() = 0

o (fg 35) (a2) ~ N2?F(w)/B




The SGD gradient update

Ay = £ [dC, (dC _dC
“ T Nld dw  dw Batch
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How to choose the batch size?
(at constant learning rate)

| Too much noise

(small batcfﬂ/
Just

right!
g There should be
an optimum batch

V Too little noise size

(big batches)




How to choose the batch size?
(at constant learning rate)
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How to choose the batch size?

(at constant learning rate) As

predicted!
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Defining the SGD “noise scale”



Defining the SGD “noise scale”
SGD integrates an underlying stochastic differential equation

w9 (n(t)) = 0

dt  dw
(nt)n(t')) = gF(w)i(t —t')




Defining the SGD “noise scale”
SGD integrates an underlying stochastic differential equation

o _ 9 (n(t)) = 0

(n(t)n(t’")) = gF(w)do(t —t')

“Noise scale”
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Defining the SGD “noise scale”
SGD integrates an underlying stochastic differential equation

After a little math:

g~eN/B

Prediction:



Test set accuracy
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Consequences

1) We can linearly scale batch size and learning rate

m “Accurate, Large Minibatch SGD: Training ImageNet in 1
Hour”, Goyal et al. (2017)

2) We expect training sets to grow over time
m Suggests batch sizes will rise
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What about momentum?
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What about momentum?

~ e N
= B(1—m)

Bopt x 1/(1 —m)




Bopt < 1/(1 —m)
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Decaying learning rate and increasing batch
size are equivalent
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Decaying learning rate and increasing batch
size are equivalent

~ e N
g = B(1—m)

s

We can choose any combination
of € and B with the same g.

so long as ¢ isn’t too large)

(



Three equivalent schedules:

Wide ResNet on
CIFAR-10
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Training curves:
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Training curves:
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Training curves: Computational cost
constant

But parallelizable
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Test curves:
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Test curves:
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Towards large batch training:
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Towards large batch training:
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Towards large batch training:
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Why does momentum scaling reduce test
accuracy?
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Why does momentum scaling reduce test

accuracy?
“Accumulation” stores moving
average of gradients
2 dC
AA = —(1-m)A+ —,
dw
Aw = Ae.



Why does momentum scaling reduce test

accuracy?
Larger momentum equals longer
memory
% dC
AA = —(1-m)A+ —,
dw
Aw = Ae.



Why does momentum scaling reduce test
accuracy?

Larger momentum equals longer

memory i

The gradient changes too
slowly as we explore the
parameter space



Training ImageNet in under 2500 updates!

rﬁ[_ Inception-Resnet-V2

Original implementation:
~ 400,000 updates
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Training ImageNet in under 2500 updates!

08
rﬁf_ 79% accuracy in under

6000 updates
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Thank You!

e “A Bayesian Perspective on Generalization and
Stochastic Gradient Descent”, arXiv:1710.06451
Samuel L Smith and Quoc V. Le

e “Don’t Decay the Learning Rate,
Increase the Batch Size”, arXiv:1711.00489

Samuel L Smith*, Pieter-dan Kindermans* and Quoc V. Le
*Equal contribution

| | slsmith@

e “Stochastic Gradient Descent as ikind
Approximate Bayesian Inference”, arXiv:1704.04289 PIKIN er@
Stephan Mandt, Matthew D. Hoffman and David M. Blei gvi@
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