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Three related questions:

● What properties control generalization?

● How should we tune SGD hyper-parameters?

● Can we train efficiently with large batches?          
(> 50,000 examples)
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Small batches out-generalize large batches
(at constant learning rate)

As observed by:

“On Large Batch 
Training…”, Keskar 
et al. (2017)
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Which minimum is best?
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Bayesian model comparison

Probability ratio of two 
competing models

Prior probability ratio of 
the models. Usually 1.

The evidence ratio!
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The Bayesian evidence                                              
(Gaussian approximation)

λi is the ith Hessian eigenvalue

λ is the L2 regularization parameter
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The Bayesian evidence                                              
(Gaussian approximation)

λi is the ith Hessian eigenvalue

λ is the L2 regularization parameter

Width of the 
minimum

Invariant to changes in 
model parameterization
(sharp minima can’t generalize!)
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Which minimum is best?

Generalization is a weighted 
combination of:

1) Depth
2) Width
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Which minimum is best?

The SGD should not minimize the 
cost function

It should maximize the evidence
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The SGD gradient update

NoiseTrue 
gradient
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The SGD gradient update
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The SGD gradient update
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The SGD gradient update

Batch 
size
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How to choose the batch size?                                  
(at constant learning rate)
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How to choose the batch size?                              
(at constant learning rate)

Just 
right!

Too little noise
(big batches)

Too much noise
(small batches)

There should be 
an optimum batch 
size
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How to choose the batch size?                              
(at constant learning rate)
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How to choose the batch size?                              
(at constant learning rate) As 

predicted!
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Defining the SGD “noise scale”                             
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Defining the SGD “noise scale”                             
SGD integrates an underlying stochastic differential equation

After a little math:

Prediction:
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Consequences

1) We can linearly scale batch size and learning rate
■ “Accurate, Large Minibatch SGD: Training ImageNet in 1 

Hour”, Goyal et al. (2017)

2) We expect training sets to grow over time
■ Suggests batch sizes will rise
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Decaying learning rate and increasing batch 
size are equivalent

                            

We can choose any combination 
of ε and B with the same g.

(so long as ε isn’t too large)
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Three equivalent schedules:

                            

Wide ResNet on 
CIFAR-10
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Training curves:

                            

Ghost batch norm,
Hoffer et al., 2017
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Training curves:

                            

Computational cost 
constant
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Computational cost 
constant
But parallelizable 

Training curves:
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Test curves:

Momentum
Nesterov 

momentum
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Test curves:

Vanilla SGD Adam
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Towards large batch training:
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Towards large batch training:

                            
Typical 

speed-up
10-100X
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Why does momentum scaling reduce test 
accuracy?
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“Accumulation” stores moving 
average of gradients

Why does momentum scaling reduce test 
accuracy?
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Larger momentum equals longer 
memory
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Larger momentum equals longer 
memory

Why does momentum scaling reduce test 
accuracy?

The gradient changes too 
slowly as we explore the 
parameter space
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Training ImageNet in under 2500 updates!

                            
Inception-Resnet-V2

Original implementation:
~ 400,000 updates

“ImageNet in one hour”
Goyal et al., 2017
(learning rate scaling)
~ 14,000 updates
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Training ImageNet in under 2500 updates!

                            
79% accuracy in under 
6000 updates

77% accuracy in under 
2500 updates

Batches of 65,536 
images
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● “A Bayesian Perspective on Generalization and                                                                    
Stochastic Gradient Descent”, arXiv:1710.06451                                                                                  
Samuel L Smith and Quoc V. Le

● “Don’t Decay the Learning Rate,                                                                                    
Increase the Batch Size”, arXiv:1711.00489                                                                                                          
Samuel L Smith*, Pieter-Jan Kindermans* and Quoc V. Le                                                             
*Equal contribution

● “Stochastic Gradient Descent as                                
Approximate Bayesian Inference”, arXiv:1704.04289                                                                             
Stephan Mandt, Matthew D. Hoffman and David M. Blei                                   

Thank You!

slsmith@
pikinder@

qvl@

https://arxiv.org/pdf/1710.06451.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1704.04289.pdf

