Three related questions:

● *What properties control* generalization*?*

● *How should we tune* SGD hyper-parameters*?*

● *Can we train efficiently with* large batches*? (> 50,000 examples)*
Small batches out-generalize large batches (at constant learning rate)

As observed by:

“On Large Batch Training…”, Keskar et al. (2017)
Which minimum is best?
Bayesian model comparison
Bayesian model comparison

\[
\frac{P(M_1 | \{y\}, \{x\})}{P(M_2 | \{y\}, \{x\})} = \frac{P(\{y\} | \{x\}; M_1)}{P(\{y\} | \{x\}; M_2)} \frac{P(M_1)}{P(M_2)}
\]
Bayesian model comparison

\[
\frac{P(M_1 | \{y\}, \{x\})}{P(M_2 | \{y\}, \{x\})} = \frac{P(\{y\} | \{x\}; M_1)}{P(\{y\} | \{x\}; M_2)} \frac{P(M_1)}{P(M_2)}
\]

Probability ratio of two competing models
Bayesian model comparison

Probability ratio of two competing models

Prior probability ratio of the models. Usually 1.

\[
\frac{P(M_1|\{y\}, \{x\})}{P(M_2|\{y\}, \{x\})} = \frac{P(\{y\}|\{x\}; M_1)}{P(\{y\}|\{x\}; M_2)} \frac{P(M_1)}{P(M_2)}
\]
Bayesian model comparison

$$\frac{P(M_1 | \{y\}, \{x\})}{P(M_2 | \{y\}, \{x\})} = \frac{P(\{y\} | \{x\}; M_1)}{P(\{y\} | \{x\}; M_2)} \cdot \frac{P(M_1)}{P(M_2)}$$

Prior probability ratio of the models. Usually 1.

Probability ratio of two competing models

The evidence ratio!
The Bayesian evidence
(Gaussian approximation)

\[P(\{y\}|\{x\}; M) \approx \exp \left\{ - \left(C(\omega_0) + \frac{1}{2} \sum_{i=1}^{P} \ln(\lambda_i/\lambda) \right) \right\} \]

\(\lambda_i \) is the \(i^{th} \) Hessian eigenvalue

\(\lambda \) is the L2 regularization parameter
The Bayesian evidence (Gaussian approximation)

$P\left(\{y\}|\{x\}; M\right) \approx \exp\left\{ - \left(C(\omega_0) + \frac{1}{2} \sum_{i=1}^{P} \ln(\lambda_i/\lambda) \right) \right\}$

λ_i is the i^{th} Hessian eigenvalue

λ is the L2 regularization parameter

Evidence for a minimum
The Bayesian evidence
(Gaussian approximation)

\[P(\{y\}|\{x\}; M) \approx \exp \left\{ - \left(C(\omega_0) + \frac{1}{2} \sum_{i=1}^{P} \ln(\lambda_i/\lambda) \right) \right\} \]

\(\lambda_i \) is the \(i \)th Hessian eigenvalue
\(\lambda \) is the L2 regularization parameter

Evidence for a minimum
Depth of the minimum
The Bayesian evidence (Gaussian approximation)

\[P(\{y\} | \{x\}; M) \approx \exp \left\{ - \left(C(\omega_0) + \frac{1}{2} \sum_{i=1}^{P} \ln(\lambda_i / \lambda) \right) \right\} \]

- \(\lambda_i \) is the \(i \)th Hessian eigenvalue
- \(\lambda \) is the L2 regularization parameter

Evidence for a minimum
Depth of the minimum
Width of the minimum
The Bayesian evidence (Gaussian approximation)

\[P(\{y\}|\{x\}; M) \approx \exp \left\{ - \left(C(\omega_0) + \frac{1}{2} \sum_{i=1}^{P} \ln(\lambda_i/\lambda) \right) \right\} \]

\(\lambda_i \) is the \(i \)th Hessian eigenvalue

\(\lambda \) is the L2 regularization parameter

Invariant to changes in model parameterization (sharp minima can’t generalize!)

Width of the minimum
Which minimum is best?
Which minimum is best?

Generalization is a weighted combination of:

1) Depth
2) Width
Which minimum is best?

The SGD should not minimize the cost function

It should maximize the evidence
The SGD gradient update

\[\Delta \omega = \frac{\epsilon}{N} \left(\frac{dC}{d\omega} + \left(\frac{d\hat{C}}{d\omega} - \frac{dC}{d\omega} \right) \right) \]

True gradient
Noise
The SGD gradient update

\[\Delta \omega = \frac{\epsilon}{N} \left(\frac{dC}{d\omega} + \left(\frac{d\hat{C}}{d\omega} - \frac{dC}{d\omega} \right) \right) \]

\[\alpha = \left(\frac{d\hat{C}}{d\omega} - \frac{dC}{d\omega} \right) \]
The SGD gradient update

\[
\Delta \omega = \frac{\epsilon}{N} \left(\frac{dC}{d\omega} + \left(\frac{d\hat{C}}{d\omega} - \frac{dC}{d\omega} \right) \right)
\]

\[
\alpha = \left(\frac{d\hat{C}}{d\omega} - \frac{dC}{d\omega} \right)
\]

\[
\langle \alpha \rangle = 0
\]

\[
\langle \alpha^2 \rangle \approx N^2 F(\omega)/B
\]
The SGD gradient update

$$\Delta \omega = \frac{\epsilon}{N} \left(\frac{dC}{d\omega} + \left(\frac{d\hat{C}}{d\omega} - \frac{dC}{d\omega} \right) \right)$$

$$\alpha = \left(\frac{d\hat{C}}{d\omega} - \frac{dC}{d\omega} \right)$$

$$\langle \alpha \rangle = 0$$

$$\langle \alpha^2 \rangle \approx N^2 F(\omega) / B$$
How to choose the batch size?
(at constant learning rate)
How to choose the batch size?
(at constant learning rate)

Too little noise
(big batches)

Too much noise
(small batches)

Just right!
How to choose the batch size? (at constant learning rate)

Too little noise (big batches)

Too much noise (small batches)

There should be an optimum batch size
How to choose the batch size? (at constant learning rate)
How to choose the batch size?
(at constant learning rate)

As predicted!
Defining the SGD “noise scale”
Defining the SGD “noise scale”

SGD integrates an underlying stochastic differential equation

\[
\frac{d\omega}{dt} = \frac{dC}{d\omega} + \eta(t) \quad \langle \eta(t) \rangle = 0
\]

\[
\langle \eta(t)\eta(t') \rangle = g F(\omega) \delta(t - t')
\]
Defining the SGD “noise scale”

SGD integrates an underlying stochastic differential equation

\[
\frac{d\omega}{dt} = \frac{dC}{d\omega} + \eta(t) \quad \langle \eta(t) \rangle = 0
\]

\[
\langle \eta(t)\eta(t') \rangle = g F(\omega) \delta(t - t')
\]
Defining the SGD “noise scale”

SGD integrates an underlying stochastic differential equation

After a little math:

\[g \approx \epsilon \frac{N}{B} \]
Defining the SGD “noise scale”

SGD integrates an underlying stochastic differential equation

After a little math:

$$g \approx \epsilon N / B$$

Prediction:

$$B_{opt} \propto \epsilon N$$
$B_{opt} \propto \epsilon$
\[B_{opt} \propto N \]
Consequences

1) We can linearly scale batch size and learning rate
 ■ “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, Goyal et al. (2017)

2) We expect training sets to grow over time
 ■ Suggests batch sizes will rise
What about momentum?
What about momentum?

\[g \approx \frac{\epsilon N}{B(1-m)} \]
What about momentum?

\[g \approx \frac{\epsilon N}{B(1 - m)} \]

\[B_{opt} \propto \frac{1}{(1 - m)} \]
$B_{opt} \propto 1/(1 - m)$
Decaying learning rate and increasing batch size are equivalent
Decaying learning rate and increasing batch size are equivalent

\[g \approx \frac{\epsilon N}{B(1-m)} \]
Decaying learning rate and increasing batch size are equivalent

\[g \approx \frac{\epsilon N}{B(1 - m)} \]

We can choose any combination of \(\epsilon \) and \(B \) with the same \(g \).

(so long as \(\epsilon \) isn’t too large)
Three equivalent schedules:

Wide ResNet on CIFAR-10
Training curves:

Ghost batch norm, Hoffer et al., 2017
Training curves:

(a)

(b)

Computational cost constant
Training curves:

- Computational cost constant
- But parallelizable

(a) Decaying learning rate
- Hybrid
- Increasing batch size

(b) Decaying learning rate
- Hybrid
- Increasing batch size
Test curves:

Momentum

Nesterov momentum
Test curves:

Vanilla SGD

Adam
Towards large batch training:
Towards large batch training:
Towards large batch training:
Towards large batch training:

![Graph showing test set accuracy over number of parameter updates with different training schedules](image-url)
Towards large batch training:

Typical speed-up 10-100X
Why does momentum scaling reduce test accuracy?

\[
\Delta A = -(1 - m) A + \frac{d \hat{C}}{d \omega},
\]

\[
\Delta \omega = A \epsilon.
\]
Why does momentum scaling reduce test accuracy?

“Accumulation” stores moving average of gradients

\[
\Delta A = -(1 - m)A + \frac{d\hat{C}}{d\omega}, \\
\Delta \omega = A\varepsilon.
\]
Why does momentum scaling reduce test accuracy?

Larger momentum equals longer memory

\[\Delta A = -(1 - m)A + \frac{d\hat{C}}{d\omega}, \]

\[\Delta \omega = A\epsilon. \]
Why does momentum scaling reduce test accuracy?

Larger momentum equals longer memory

The gradient changes too slowly as we explore the parameter space
Training ImageNet in under 2500 updates!

Inception-Resnet-V2

Original implementation:
~ 400,000 updates

“ImageNet in one hour”
Goyal et al., 2017
(learning rate scaling)
~ 14,000 updates
Training ImageNet in under 2500 updates!

- 79% accuracy in under 6000 updates
- 77% accuracy in under 2500 updates
- Batches of 65,536 images
Thank You!

- “A Bayesian Perspective on Generalization and Stochastic Gradient Descent”, arXiv:1710.06451
 Samuel L Smith and Quoc V. Le

- “Don’t Decay the Learning Rate, Increase the Batch Size”, arXiv:1711.00489
 Samuel L Smith*, Pieter-Jan Kindermans* and Quoc V. Le
 *Equal contribution

- “Stochastic Gradient Descent as Approximate Bayesian Inference”, arXiv:1704.04289
 Stephan Mandt, Matthew D. Hoffman and David M. Blei