Google

Don't Decay the Learning Rate, Increase the Batch Size

Samuel L. Smith, Pieter-Jan Kindermans, Quoc V. Le December 9th 2017

Google Brain

Three related questions:

Google

• What properties control <u>generalization</u>?

• How should we tune <u>SGD hyper-parameters</u>?

• Can we train efficiently with <u>large batches</u>? (> 50,000 examples)

Small batches out-generalize large batches (at <u>constant learning rate</u>)

Bayesian model comparison

Bayesian model comparison

$\frac{P(M_1|\{y\},\{x\})}{P(M_2|\{y\},\{x\})} = \frac{P(\{y\}|\{x\};M_1)}{P(\{y\}|\{x\};M_2)} \frac{P(M_1)}{P(M_2)}$

Bayesian model comparison

$$\frac{P(M_1|\{y\},\{x\})}{P(M_2|\{y\},\{x\})} = \frac{P(\{y\}|\{x\};M_1)}{P(\{y\}|\{x\};M_2)}\frac{P(M_1)}{P(M_2)}$$

Probability ratio of two competing models

Probability ratio of two competing models

Probability ratio of two competing models

The evidence ratio!

 λ_i is the ith Hessian eigenvalue

 $\boldsymbol{\lambda}$ is the L2 regularization parameter

$$P(\{y\}|\{x\};M) \approx \exp\left\{-\left(C(\omega_0) + \frac{1}{2}\sum_{i=1}^P \ln(\lambda_i/\lambda)\right)\right\}$$

 λ_i is the ith Hessian eigenvalue

 $\boldsymbol{\lambda}$ is the L2 regularization parameter

$$P(\{y\}|\{x\};M) \approx \exp\left\{-\left(C(\omega_0) + \frac{1}{2}\sum_{i=1}^{P}\ln(\lambda_i/\lambda)\right)\right\}$$

Evidence for a minimum

 λ_i is the ith Hessian eigenvalue

 λ is the L2 regularization parameter

$$P(\{y\}|\{x\};M) \approx \exp\left\{-\left(C(\omega_0) + \frac{1}{2}\sum_{i=1}^{P}\ln(\lambda_i/\lambda)\right)\right\}$$

ence for a

Evidence for minimum

Google

Depth of the minimum

 λ_i is the ith Hessian eigenvalue

 λ is the L2 regularization parameter

$$P(\{y\}|\{x\};M) \approx \exp\left\{-\left(C(\omega_0) + \frac{1}{2}\sum_{i=1}^{P}\ln(\lambda_i/\lambda)\right)\right\}$$

Evidence for a
minimum Depth of the
minimum Width of the
minimum

 λ_i is the ith Hessian eigenvalue

 $\boldsymbol{\lambda}$ is the L2 regularization parameter

$$P(\{y\}|\{x\};M) \approx \exp\left\{-\left(C(\omega_0) + \frac{1}{2}\sum_{i=1}^{P}\ln(\lambda_i/\lambda)\right)\right\}$$
Invariant to changes in
model parameterization
(sharp minima can't generalize!) Width of the
minimum

The SGD should not minimize the cost function

It should maximize the evidence

$$\Delta \omega = \frac{\epsilon}{N} \left(\frac{dC}{d\omega} + \left(\frac{d\hat{C}}{d\omega} - \frac{dC}{d\omega} \right) \right)$$

$$\alpha = \left(\frac{d\hat{C}}{d\omega} - \frac{dC}{d\omega}\right)$$

 α

$$\begin{split} \Delta \omega &= \frac{\epsilon}{N} \left(\frac{dC}{d\omega} + \left(\frac{d\hat{C}}{d\omega} - \frac{dC}{d\omega} \right) \right) \begin{array}{l} \text{Batch} \\ \text{size} \\ & \left\langle \alpha \right\rangle = 0 \\ & = \left(\frac{d\hat{C}}{d\omega} - \frac{dC}{d\omega} \right) \\ & \left\langle \alpha^2 \right\rangle \approx N^2 F(\omega) / B \end{split}$$

 α

As

Defining the SGD "noise scale"

$$\frac{d\omega}{dt} = \frac{dC}{d\omega} + \eta(t) \qquad \langle \eta(t) \rangle = 0$$

$\langle \eta(t)\eta(t')\rangle = gF(\omega)\delta(t-t')$

$$\frac{d\omega}{dt} = \frac{dC}{d\omega} + \eta(t) \qquad \langle \eta(t) \rangle = 0$$
$$\langle \eta(t)\eta(t') \rangle = gF(\omega)\delta(t - t')$$
$$\langle \eta(t)\eta(t') \rangle = gF(\omega)\delta(t - t')$$
"Noise scale"

After a little math:

 $g \approx \epsilon N/B$

After a little math:

 $g \approx \epsilon N/B$

Prediction:

 $B_{opt} \propto \epsilon N$

 $B_{opt} \propto \epsilon$

 $B_{opt} \propto N$

Proprietary + Confidentia

Consequences

1) We can linearly scale batch size and learning rate

 "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour", Goyal et al. (2017)

2) We expect training sets to grow over time

Suggests batch sizes will rise

What about momentum?

What about momentum?

$$g \approx \frac{\epsilon N}{B(1-m)}$$

What about momentum?

$$g \approx \frac{\epsilon N}{B(1-m)}$$

$$B_{opt} \propto 1/(1-m)$$

Proprietary + Confidential

 $B_{opt} \propto 1/(1-m)$

Decaying learning rate and increasing batch size are equivalent

Decaying learning rate and increasing batch size are equivalent

$$g \approx \frac{\epsilon N}{B(1-m)}$$

Decaying learning rate and increasing batch size are equivalent

We can choose any combination of ϵ and B with the same g.

(so long as ϵ isn't too large)

Three equivalent schedules:

Wide ResNet on CIFAR-10

Training curves:

Ghost batch norm, Hoffer et al., 2017

Training curves:

Computational cost constant

Training curves:

Google

Computational cost constant But <u>parallelizable</u>

Test curves:

Momentum

Nesterov momentum

Test curves:

Vanilla SGD

Larger momentum equals longer memory

The gradient changes too slowly as we explore the parameter space

Training ImageNet in under 2500 updates!

Inception-Resnet-V2

Original implementation: ~ 400,000 updates

"ImageNet in one hour" Goyal et al., 2017 (learning rate scaling) ~ 14,000 updates

Training ImageNet in under 2500 updates!

79% accuracy in under 6000 updates

77% accuracy in under 2500 updates

Batches of 65,536 images

Thank You!

Google

- "A Bayesian Perspective on Generalization and Stochastic Gradient Descent", <u>arXiv:1710.06451</u> Samuel L Smith and Quoc V. Le
- "Don't Decay the Learning Rate, Increase the Batch Size", <u>arXiv:1711.00489</u>
 Samuel L Smith*, Pieter-Jan Kindermans* and Quoc V. Le *Equal contribution
- "Stochastic Gradient Descent as Approximate Bayesian Inference", <u>arXiv:1704.04289</u> Stephan Mandt, Matthew D. Hoffman and David M. Blei

slsmith@ pikinder@ qvl@